令和8年度

専攻科入学試験(学力)問題

機械工学系 専門科目

· 熱力学 №.1/5

· 流体力学 №. 2 / 5

·材料力学 №.3/5

· 材料学 №. 4 / 5

·機械工作法 №.5/5

(表紙を含み6枚綴)

受験番号

※受験番号は全ての問題兼解答用紙に記入すること。

受験番号

機械	工学系	(熱力学)
----	-----	-------

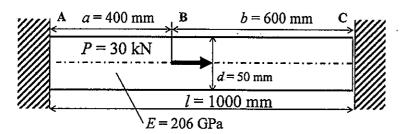
No. 1/5

初状態が圧力 $P_1=1.2$ [MPa]、温度 $T_1=130$ [°C]、容積 $V_1=2$ [m³]の理想気体がある。この理想気体の容積が $V_2=8$ [m³]になるまで膨張したとするとき、以下の問いに答えなさい。

- (1) 等温膨張した場合に得られる工業仕事量を求めなさい。
- (2) 等圧膨張した場合に得られる工業仕事量を求めなさい。
- (3) 可逆断熱膨脹した場合に得られる工業仕事量を求めなさい。 (ただし、比熱比 k=1.4として計算すること)
- (4) ポリトロープ変化した場合で、終わりの圧力が $P_2 = 200$ [kPa]となったとき
 - (4-a) ポリトローブ指数を求めなさい。 (4-b) 得られる工業仕事量を求めなさい。

受験番	号
, <u></u>	

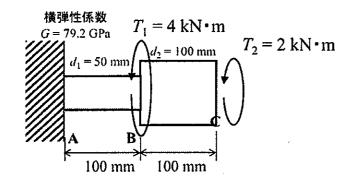
機械工学系 (流体力学)

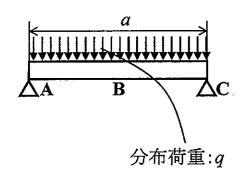

No. 2/5

- 問. タンク A (大気開放、水位 10 m) から、タンク B (大気開放、水位 3 m) へ水を供給している。両タンクは水平な地面上にあり、底部は地面に沿って設置された直管 (内径 50 mm、長さ 20 m) で接続されている。水の密度は $\rho=1000~kg/m^3$ 、重力加速度は 9.8 m/s^2 とする。タンクは十分広く大きいとする。
- (1)水の粘性や損失(摩擦・バルブ)を無視するとき、管内流速 v を求めよ。
- (2) 管には損失係数 $\zeta = 0.5$ のバルブが設置してあり、管摩擦係数は $\lambda = 0.02$ とする。これらの損失を考慮した場合の管内流速 v を求めよ。
- (3)(2)と同じ損失を考慮する状態で、バルブはタンクAとBの中間に設置されているとき、バルブ直前の圧力を求めよ。

__機械 __工学系 (材料力学)

No. 3/5


【1】B点の変位をそれぞれ求めよ、ただし部材は縦弾性係数E=206 GPa,直径d=50 mmである.


【2】図においてC点の①y方向変位、②傾き α を求めよ、ただし、縦弾性係数E、断面二次モーメントI、横弾性係数G、極断面二次モーメントIとする、また、部材ABとBCは直交している。

【3】図のような段付き丸棒において B 点および C 点にトルクが同じ方向にかかっているとき、丸棒の \mathbb{O} B 点のねじれ角 ϕ B、 \mathbb{O} C 点のねじれ角 ϕ C を求めよ、ここで、横弾性係数は G=79.2 GPa とする、(単位は度で答えよ、)

【4】図のように分布荷重qがかかる両端単純支持ばりの中央であるB部に生じる最大曲げ応力を文字で表せ、ただし、部材ACは直径dの丸棒である。

ङ	験	来	두
	V.	88	13

機械_工学系(材料学)	No.	4 /5	,
【1】炭素鋼(JIS 規格 S45C)と片状黒鉛鋳鉄の強度試験(1)それぞれの材料の引張試験を行った。その場合、破(1-1)炭素鋼			
(1-2) 片状黑鉛鋳鉄			•
(2) それぞれの材料の丸棒のねじり試験を行った。その 身に破面の角度が丸棒の試験片の軸に対してどのようにど (2-1) 炭素鋼			
(2-2) 片状黒鉛鋳鉄			
【2】次の写真は光学顕微鏡で200倍で撮影した金属組(1)写真1は S20C 鋼焼き鈍し材である。この組織の①			
<u> </u>	2		
写真 1 【3】鋼の代表的な熱処理4種について、冷却方法(冷却速	写真 2	の影響が	ついて統領に当用は ト
焼鉱し:	这人、强及 <u>不</u> 处证。	~V/於晉(C	ング・(同様で見られている)によっ
焼ならし:			
焼入れ:			
焼戻し:		· ·	
【4】次の問に答えよ。			
(1) 次の材料記号の日本語名称は何か? FCD			
(2)(1)の材料と片状黒鉛鋳鉄で機械的性質の観点で比	比較したときに異な	:る特徴をシ	たべよ。

巫脸巫	E
受験番	7

	械工学系	_(機械工作法)	,	No. 5	5		
1. 鋳造法に関する	以下の文章の	空欄を埋めよ.				•	
一般に砂型を製	作するとき,・	その強度を高めると	(1)	が低下	する.鋳込み	の際に砂型内	にガスがたま
ると欠陥の原因に	なるので針金	などを用いて <u>(2)</u>		_を設ける. ダ~	イカスト法で	は、精密に加	工された金雪
に Al, Zn, Mg など	(3)	金属を加退	巨して高速で射	出注入する. 遠	心鋳造は鋳型	を (4)	
せ,遠心力により	鋳型内面に湯	を押し付けて鋳込む	ア手法である.	フルモールド法	では原型模型	[に_(5)	
用いる. また, ロ	ストワックス	去においては模型に	、特殊な <u>(6)</u>	;	を用いる.		
2. 溶接に関する以	下の文章の空	欄を埋めよ.					
JIS によると溶接	きとは「2個以	上の母材を、接合さ	される母材間に	(7)	がある	ように,熱,	圧力、またに
その両方によって	一体にする操	作.」である.突台	îせ継手の <u>(8)</u>		は溶接時の	D溶込みをよ	くするために
(9)	を加工して	「作った溝であり,	I 形, V 形, X	形などの形状な	がある. アー	ク溶接に用い	られる被覆ア
ーク溶接棒の被覆	は熱によりガ	スまたは <u>(10)</u>	に	変化し、シール	νドガスは <u>(1</u>	1)	からア
ークを守る. <u>(12</u>)		は重ね合わせ7	た金属板 (重ね	継手)を棒状の	D電極で挟み,	大電流を流	して、溶融圧
着する手法である.							
先によって <u>(15)</u>	に関する4つ(の段階は,発生→ <u>(</u> が変動し,切削4	犬態が不安定に	なる. また, 棹	構成刃先の分類	製片の一部が	切削面に残留
し, <u>(16)</u>							
る働きもある.工具							
表しており, V, T							
		き削りは一般に刃物					
の遊びを取りなが	ら切削するが,	切削の始めに <u>(22</u>	2)	<u>と (23)</u>		_の間にすべ	りが生じる.
一方,下向き削り、	では切削の始め	から厚い切りくず	き出し, 切刃の	り滑りがないが	,送り駆動系	の_(24)	
必要であり、切削が	始めに衝撃がた	ロわるため, <u>(25)</u>		_な構造が必要と	となる.		
		要素は砥粒、結合剤					
(27)	砥石と呼ば	:れ, <u>(28)</u>	で弾性	が無く脆い性質	をもち、広く	利用されてい	3 る.
		,					
4. 塑性加工に関す							
管の曲げに用いる	S <u>(29)</u>	法では管	fに砂や <u>(30)</u>		_,鉛,その他	1低溶融合金加	ょどを充填し
たうえで、両端を関	閉じ、曲げる.						